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Abstract 
This paper presents a new algorithm based on 
dynamic programming to solve the problem of off-
line LSP set up in MPLS networks. This algorithm 
is an offline algorithm that tries to map the LSPs 
onto a network graph such that a total cost 
function based on end-to-end delays and number 
of physical hops is optimized. The proposed 
algorithm consists of two steps. In the first step, we 
find k-shortest paths for each request and in the 
second step we try to assign one path to each 
request using dynamic programming algorithm. 
We approximate the original cost function with an 
additive one, which is a reasonable assumption for 
not very highly loaded links. We compare our 
results with the optimal solutions, which are 
resulted from exhaustive search. Results are 
presented as the percentage of times that the 
proposed algorithm can find optimal or 
suboptimal solution for a directed network graph 
and a set of LSP requests in different average link 
loads. The simulation result shows that the 
algorithm can find optimal or suboptimal solution 
in more than 94% of times.  

Keywords: MPLS networks, LSP setup, Dynamic 
programming, k-shortest paths. 

Introduction 
Destination based forwarding, which is used 
traditionally in IP routers cannot take full advantage 
of multiple paths that exist in Internet service provider 
networks and prevents the networks to operate 
efficiently [1]. Development of Multi Protocol Label 
Switching (MPLS) that efficiently support explicit 
routing facilitates traffic engineering. Explicit routing 
allows a particular packet stream to follow a 
predetermined path rather than a path computed by 
hop-by-hop destination based routing such as Open 
Shortest Path First, OSPF, or Intermediate System-to-
Intermediate System, IS-IS [1]. In MPLS, the packets 
are encapsulated, at ingress nodes, with labels that are 

then used to forward the packets along the Label 
Switched Paths (LSPs).  The LSP can be thought of as 
virtual traffic trunk that carry flow aggregates by 
classifying the packets arriving at the edge or ingress 
routers of an MPLS network into “Forwarding 
Equivalence Classes” (FECs)[2]. 

Given the network graph, choosing the physical path 
to route a LSP request, is a central problem. In MPLS, 
paths can be calculated on-line as the demands arrive 
or it can be performed in the batch mode for a number 
of LSP requests arrived over a period based on long-
term estimate of network traffic.   

In on-line algorithms, requests arrive one-by-one and 
there is no a-priori knowledge about future requests. 
The objective of these algorithms is to accept as many 
requests as possible or minimize the request rejection. 
A well-known algorithm of this category is Minimum 
Interference Routing Algorithm, MIRA [2]. MIRA is 
an on-line algorithm that is based on the idea that a 
newly routed tunnel must follow a route that does not 
“interfere too much” with a route that may be critical 
to satisfy a future demand. The critical links are those 
links that if heavily loaded, would make it impossible 
to satisfy future demands between certain ingress-
egress pairs.  

Off-line calculation, which is usually used in network 
design process or traffic engineering try to design the 
network layout such that a cost function is globally 
optimized over the network graph [3, 4]. In other 
words the objective of off-line layout design is to 
make the most efficient use of the network, i.e., to 
minimize the resource usage for the LSPs that are 
being routed. With this objective, it is possible that 
after the routing has been done there may no available 
capacity between certain ingress-egress nodes. This 
lack of residual capacity will not be important if there 
is no future request. However, in MPLS network we 
expect to have on-line requests, therefore we can 
thought of off-line results as the initial operating point 
of the network.  
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Off-line layout design usually results into               
NP-complete problem and approximate solutions have 
been proposed before. In [5] a solution based on tabu 
search is proposed and in [3] a randomized algorithm 
is suggested. 

In this paper we present a new two steps algorithm for 
this problem which with a low complexity can 
produce optimal or suboptimal solution. In the first 
step, we find k-shortest path for each request and in 
the second step we try to assign one path to each 
request using a dynamic programming algorithm. We 
approximate the original cost function with an 
additive one, which is a reasonable assumption for not 
very highly loaded links as happen in off-line layout 
design for MPLS networks. We compare our 
simulation results with optimal solutions, which are 
resulted from exhaustive search. 

1. Problem definition  
The network topology is modeled by a directed 
graph ),( EVG = , where V is the set of nodes 
(vertices) and E  the set of links (edges). Each link  e  
in E  is associated with a number lC  which is 
denoting of the transmission capacity of that link. A 
LSP request is defined by a starting vertex is , an 
ending vertex id , a directed route from is to id , and a 
capacity, which also referred to as demand, iC . It is 
assumed that the demand iC  is calculated from QOS 
requirements of the LSP request. The load of a link e  
is the summed capacity of LSPs traversing e . With 
these definitions, the problem statement is as follow: 
Given a list of source-destination 
pairs )},(),...,,{( 11 MM dsds , each with a positive 
capacity demand iC  , the objective is to find a system 

{ }MPPPP ,...,, 21=  of LSP paths such that the total 
end-to-end delay on network links, i.e., the equation 
(1) is minimized: 
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iP is the path connecting is to id for LSP request 
number i  i.e., an end-to-end LSP. In equation (1) 

ijF and ijC are the flow and capacity of link ),( ji on 
the network graph. 

Equation (1) is the total end-to-end delay assuming 
additive property for delay and is usually used as the 
cost function in the routing algorithms [6]. 

It is known that this problem is NP-complete and we 
should try to find approximate solutions [3]. 

2. K-shortest paths problem  

The k-shortest paths problem is to find the k paths 
connecting a given source-destination pair in the 

given directed graph with minimum total length [7]. 
This problem is a generalized version of the well 
known shortest path problem. Given a directed graph, 
it was shown in [7] that the set of k shortest paths 
connecting a given pair of vertices can be found in 
time )log( kVVEO ++ , for each request, 

where E , V  are the number of edges and nodes. 
Therefore we can compute the k best candidate paths 
for each LSP request in a reasonable amount of time 
according to a certain criteria for path length. We 
should note that assigning the best path for each 
request is not possible because it may result into 
highly loaded or saturated links which is not 
acceptable and increases the cost function rapidly. 

3. Proposed Algorithm 
The proposed algorithm consists of two steps: finding 
k shortest (minimum hop count) paths for each 
request and assigning one path from k  ones (which 
are calculated in step one) to each request. 

There are two points to note about equation (1) First, 
the cost function will increase rapidly if the load of a 
link reaching the capacity of the link. Second, longer 
paths will have more effect on the cost function. The 
first factor addresses the load-balancing problem on 
the network and the second factor addresses the 
minimum hop routing scheme. Therefore, each 
strategy for designing LSP layout must consider both 
of these factors.  

3.1. Finding K-shortest paths 
Minimum hop algorithm is popular scheme that is 
used in online LSP setup. In this algorithm, the path 
from the ingress to the egress with the least number of 
feasible links is chosen. This can be achieved using 
the Dijkstra on the subgraph that is constructed from 
the network graph when the infeasible links i.e., links 
with lower capacity of the current request, are 
removed. Using minimum hop path decreases the 
resource consumption of the network. However, using 
minimum hop path for all requests makes some links 
saturated or congested and the cost function grows 
rapidly. Therefore we have to use longer paths for 
some requests according to the requests capacity and 
to minimize a given cost function to balance the 
network load on the various network links. 
In the first step, considering the number of hop count 
as the length of a path, we find k shortest paths for 
each LSP request. Each of these paths can be a 
potential candidate for the route of the LSP request. 
Assigning one from k  paths to each request is done 
in the second step of the algorithm. The larger the 
candidates i.e. k , the better solution and nearer to 
optimal, is found and also more computations are 
required. The Computational complexity of this work 
is given in section 2. 
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3.2. Path assignment  
In the second step of the proposed algorithm we try to 
assign one path from k  to each request. We use 
dynamic programming for these M  sequential 
decisions, which has the computational complexity 
of )( 2kMO . Dynamic programming is a method to 
find the optimal solution in a class of sequential 
decisions with discrete time system and additive cost 
function over time. This method is based on the 
Bellman equation to find the optimal policy in a 
sequence of decisions. Using Dynamic programming 
algorithm an optimal policy can be constructed in 
piecemeal fashion, first constructing optimal policy 
for the tail sub problem involving the last stage, then 
extending the optimal policy for the tail sub problem 
involving the last two stages and continuing in this 
manner until an optimal policy for the entire problem 
is constructed. 

In the second step of our algorithm, we consider the 
problem as a sequential decision problem with M , the 
number of LSP requests, stages that we should find an 
optimal policy in deciding one from k , the number of 
shortest paths calculated in stage one, options in each 
stage. Our problem is discrete in nature but the cost 
function that we are going to minimized is not 
additive over time. This is the problem that makes our 
algorithm to produce an approximate solution. In 
other word we are going to decide the LSP paths 
sequentially and hence the links flow. However the 
cost function of equation (1) is not additive with 
respect to links flow. 

Therefore we approximate: 
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This assumption is reasonable for not very highly 
loaded links, and is valid in off-line layout design as 
mentioned in introduction. 

Briefly in the second step of our algorithm we use the 
approximated cost function and dynamic 
programming approach to find the optimal policy in 
assigning paths to requests. At the end of this step we 
assign one path to each LSP request. 

The accuracy of this approximation depends on the 
links load because the smaller the term 21 FF +  
compared to C , the approximate equality is better 
provided in equation (2).   

4. Numerical Results 
Off line algorithm results, are usually compared to 
optimal solution which is resulted from the exhaustive 
search. In the exhaustive search all possible cases in 
assigning paths to requests are examined and the best 

assignment which yield the minimum cost is 
extracted. 

To evaluate our algorithm we use the network graph 
of figure (1). The network graph consists of seven 
nodes and nine directed edges. There are three LSP 
requests i.e. 3=M  that their sources and destinations 
are shown on the network graph. 

We extracted four paths i.e. 4=k  for each request 
considering hop count as the length of the path in the 
first step of the algorithm. For example the 4-shortest 
paths for LSP request between nodes 0 and 3 
are:
{ }36540,3650,3240,3210 −−−−−−−−−−−−− . 

In exhaustive search all possible 34  cases for path 
assignment is checked and the assignment with 
minimum cost is chosen as the optimal solution. 

The larger the links capacities, the lighter the links 
load and the better the results are extracted from our 
algorithm. The reason is that in this case our additive 
assumption is more reasonable. Therefore we consider 
the average links load in our evaluations. 

In each test, the LSP demands are randomly selected 
between )1,0( and the network link capacities are 
randomly selected between ),0( X where X  is used 
to control average network link capacities or the 
average link loads. Each test is done hundred of times 
and the average performance of the algorithm to find 
optimal or suboptimal path is calculated and 
compared to optimal solution extracted from the 
exhaustive search. 

 

 

 

 

 

 

 

Fig. 1 Network graph for algorithm evaluation  

 

Table 1 Performance Results of proposed algorithm  

Average link 
load 

% of times 
that  

reach  optimal 
solution 

% of  times 
that  reach sub 

optimal 
solution 

 (% average 
deviation)  

% of times 
that no 

solution was 
found 

20 % 72 26.1 (14) 1.9 

30% 71 23.4 (24) 5.6 

40% 68 30   (10) 2 
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Table (1) summarized the results of the algorithm for 
three different average link loads. 

Column two of this table shows the percentage of 
times that the proposed algorithm can find the optimal 
solution. Column three shows the percentage of times 
that the algorithm finds a sup optimal solution. The 
average deviation of this solution compare to optimal 
solution is given in parentheses. Last Column shows 
the percentage of times that the algorithm fails to find 
solution. 

As the table shows, the lighter the links load the better 
is the performance of the proposed algorithm in 
percentage of times to find the optimal solution. 
Average deviation of the suboptimal solution is also 
an important factor that should be noticed.  

An important advantage of our algorithm is its low 
computational complexity which makes it practical in 
large network graphs with hundreds of LSP requests 
where using exhaustive search is computationally 
impossible.  

Conclusions 
In this paper we have presented a new algorithm for 
off line LSP set up in MPLS networks. Off line layout 
design is usually used as an initial operating point for 
MPLS networks and in this phase links are not 
heavily loaded. Using this fact we proposed a new 
approximate algorithm based on dynamic 
programming to map LSP requests onto the network 
graph. In the first step of the algorithm we find         
k-shortest path for each request assuming hop count 
as the length of the path. In the second stage of the 
algorithm, approximating the cost function with an 
additive one, we try to assign one path to each request 
using dynamic programming method. Evaluations 
which are done on a directed network graph for 
different average links load, as summarized in table 1, 
show that the algorithm can find optimal or 
suboptimal solution in more than 94% of times. The 
main advantage of the proposed algorithm is its low 
complexity which makes it practical in real large 
network graphs. 
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