
 171

A New Off-line Algorithm for Batch End-to-End LSP
 Set up in MPLS Networks

Abdorasoul Ghasemi, Karim Faez

Department of Electrical Engineering
AmirKabir University of Technology, Hafez Avenue, Tehran, Iran, 15914

Emails: arghasemi@aut.ac.ir, kfaez@aut.ac.ir

Abstract
This paper presents a new algorithm based on
dynamic programming to solve the problem of off-
line LSP set up in MPLS networks. This algorithm
is an offline algorithm that tries to map the LSPs
onto a network graph such that a total cost
function based on end-to-end delays and number
of physical hops is optimized. The proposed
algorithm consists of two steps. In the first step, we
find k-shortest paths for each request and in the
second step we try to assign one path to each
request using dynamic programming algorithm.
We approximate the original cost function with an
additive one, which is a reasonable assumption for
not very highly loaded links. We compare our
results with the optimal solutions, which are
resulted from exhaustive search. Results are
presented as the percentage of times that the
proposed algorithm can find optimal or
suboptimal solution for a directed network graph
and a set of LSP requests in different average link
loads. The simulation result shows that the
algorithm can find optimal or suboptimal solution
in more than 94% of times.

Keywords: MPLS networks, LSP setup, Dynamic
programming, k-shortest paths.

Introduction
Destination based forwarding, which is used
traditionally in IP routers cannot take full advantage
of multiple paths that exist in Internet service provider
networks and prevents the networks to operate
efficiently [1]. Development of Multi Protocol Label
Switching (MPLS) that efficiently support explicit
routing facilitates traffic engineering. Explicit routing
allows a particular packet stream to follow a
predetermined path rather than a path computed by
hop-by-hop destination based routing such as Open
Shortest Path First, OSPF, or Intermediate System-to-
Intermediate System, IS-IS [1]. In MPLS, the packets
are encapsulated, at ingress nodes, with labels that are

then used to forward the packets along the Label
Switched Paths (LSPs). The LSP can be thought of as
virtual traffic trunk that carry flow aggregates by
classifying the packets arriving at the edge or ingress
routers of an MPLS network into “Forwarding
Equivalence Classes” (FECs)[2].

Given the network graph, choosing the physical path
to route a LSP request, is a central problem. In MPLS,
paths can be calculated on-line as the demands arrive
or it can be performed in the batch mode for a number
of LSP requests arrived over a period based on long-
term estimate of network traffic.

In on-line algorithms, requests arrive one-by-one and
there is no a-priori knowledge about future requests.
The objective of these algorithms is to accept as many
requests as possible or minimize the request rejection.
A well-known algorithm of this category is Minimum
Interference Routing Algorithm, MIRA [2]. MIRA is
an on-line algorithm that is based on the idea that a
newly routed tunnel must follow a route that does not
“interfere too much” with a route that may be critical
to satisfy a future demand. The critical links are those
links that if heavily loaded, would make it impossible
to satisfy future demands between certain ingress-
egress pairs.

Off-line calculation, which is usually used in network
design process or traffic engineering try to design the
network layout such that a cost function is globally
optimized over the network graph [3, 4]. In other
words the objective of off-line layout design is to
make the most efficient use of the network, i.e., to
minimize the resource usage for the LSPs that are
being routed. With this objective, it is possible that
after the routing has been done there may no available
capacity between certain ingress-egress nodes. This
lack of residual capacity will not be important if there
is no future request. However, in MPLS network we
expect to have on-line requests, therefore we can
thought of off-line results as the initial operating point
of the network.

 172

Off-line layout design usually results into
NP-complete problem and approximate solutions have
been proposed before. In [5] a solution based on tabu
search is proposed and in [3] a randomized algorithm
is suggested.

In this paper we present a new two steps algorithm for
this problem which with a low complexity can
produce optimal or suboptimal solution. In the first
step, we find k-shortest path for each request and in
the second step we try to assign one path to each
request using a dynamic programming algorithm. We
approximate the original cost function with an
additive one, which is a reasonable assumption for not
very highly loaded links as happen in off-line layout
design for MPLS networks. We compare our
simulation results with optimal solutions, which are
resulted from exhaustive search.

1. Problem definition
The network topology is modeled by a directed
graph),(EVG = , where V is the set of nodes
(vertices) and E the set of links (edges). Each link e
in E is associated with a number lC which is
denoting of the transmission capacity of that link. A
LSP request is defined by a starting vertex is , an
ending vertex id , a directed route from is to id , and a
capacity, which also referred to as demand, iC . It is
assumed that the demand iC is calculated from QOS
requirements of the LSP request. The load of a link e
is the summed capacity of LSPs traversing e . With
these definitions, the problem statement is as follow:
Given a list of source-destination
pairs)},(),...,,{(11 MM dsds , each with a positive
capacity demand iC , the objective is to find a system

{ }MPPPP ,...,, 21= of LSP paths such that the total
end-to-end delay on network links, i.e., the equation
(1) is minimized:

� −
=

),(jilinksall ijij

ij

FC

F
Cost (1)

iP is the path connecting is to id for LSP request
number i i.e., an end-to-end LSP. In equation (1)

ijF and ijC are the flow and capacity of link),(ji on
the network graph.

Equation (1) is the total end-to-end delay assuming
additive property for delay and is usually used as the
cost function in the routing algorithms [6].

It is known that this problem is NP-complete and we
should try to find approximate solutions [3].

2. K-shortest paths problem

The k-shortest paths problem is to find the k paths
connecting a given source-destination pair in the

given directed graph with minimum total length [7].
This problem is a generalized version of the well
known shortest path problem. Given a directed graph,
it was shown in [7] that the set of k shortest paths
connecting a given pair of vertices can be found in
time)log(kVVEO ++ , for each request,

where E , V are the number of edges and nodes.
Therefore we can compute the k best candidate paths
for each LSP request in a reasonable amount of time
according to a certain criteria for path length. We
should note that assigning the best path for each
request is not possible because it may result into
highly loaded or saturated links which is not
acceptable and increases the cost function rapidly.

3. Proposed Algorithm
The proposed algorithm consists of two steps: finding
k shortest (minimum hop count) paths for each
request and assigning one path from k ones (which
are calculated in step one) to each request.

There are two points to note about equation (1) First,
the cost function will increase rapidly if the load of a
link reaching the capacity of the link. Second, longer
paths will have more effect on the cost function. The
first factor addresses the load-balancing problem on
the network and the second factor addresses the
minimum hop routing scheme. Therefore, each
strategy for designing LSP layout must consider both
of these factors.

3.1. Finding K-shortest paths
Minimum hop algorithm is popular scheme that is
used in online LSP setup. In this algorithm, the path
from the ingress to the egress with the least number of
feasible links is chosen. This can be achieved using
the Dijkstra on the subgraph that is constructed from
the network graph when the infeasible links i.e., links
with lower capacity of the current request, are
removed. Using minimum hop path decreases the
resource consumption of the network. However, using
minimum hop path for all requests makes some links
saturated or congested and the cost function grows
rapidly. Therefore we have to use longer paths for
some requests according to the requests capacity and
to minimize a given cost function to balance the
network load on the various network links.
In the first step, considering the number of hop count
as the length of a path, we find k shortest paths for
each LSP request. Each of these paths can be a
potential candidate for the route of the LSP request.
Assigning one from k paths to each request is done
in the second step of the algorithm. The larger the
candidates i.e. k , the better solution and nearer to
optimal, is found and also more computations are
required. The Computational complexity of this work
is given in section 2.

 173

3.2. Path assignment
In the second step of the proposed algorithm we try to
assign one path from k to each request. We use
dynamic programming for these M sequential
decisions, which has the computational complexity
of)(2kMO . Dynamic programming is a method to
find the optimal solution in a class of sequential
decisions with discrete time system and additive cost
function over time. This method is based on the
Bellman equation to find the optimal policy in a
sequence of decisions. Using Dynamic programming
algorithm an optimal policy can be constructed in
piecemeal fashion, first constructing optimal policy
for the tail sub problem involving the last stage, then
extending the optimal policy for the tail sub problem
involving the last two stages and continuing in this
manner until an optimal policy for the entire problem
is constructed.

In the second step of our algorithm, we consider the
problem as a sequential decision problem with M , the
number of LSP requests, stages that we should find an
optimal policy in deciding one from k , the number of
shortest paths calculated in stage one, options in each
stage. Our problem is discrete in nature but the cost
function that we are going to minimized is not
additive over time. This is the problem that makes our
algorithm to produce an approximate solution. In
other word we are going to decide the LSP paths
sequentially and hence the links flow. However the
cost function of equation (1) is not additive with
respect to links flow.

Therefore we approximate:

211

1

21

21

)(
2

)(FFC
F

FC
F

FFC
FF

−−
+

−
≅

+−
+

. (2)

This assumption is reasonable for not very highly
loaded links, and is valid in off-line layout design as
mentioned in introduction.

Briefly in the second step of our algorithm we use the
approximated cost function and dynamic
programming approach to find the optimal policy in
assigning paths to requests. At the end of this step we
assign one path to each LSP request.

The accuracy of this approximation depends on the
links load because the smaller the term 21 FF +
compared to C , the approximate equality is better
provided in equation (2).

4. Numerical Results
Off line algorithm results, are usually compared to
optimal solution which is resulted from the exhaustive
search. In the exhaustive search all possible cases in
assigning paths to requests are examined and the best

assignment which yield the minimum cost is
extracted.

To evaluate our algorithm we use the network graph
of figure (1). The network graph consists of seven
nodes and nine directed edges. There are three LSP
requests i.e. 3=M that their sources and destinations
are shown on the network graph.

We extracted four paths i.e. 4=k for each request
considering hop count as the length of the path in the
first step of the algorithm. For example the 4-shortest
paths for LSP request between nodes 0 and 3
are:
{ }36540,3650,3240,3210 −−−−−−−−−−−−− .

In exhaustive search all possible 34 cases for path
assignment is checked and the assignment with
minimum cost is chosen as the optimal solution.

The larger the links capacities, the lighter the links
load and the better the results are extracted from our
algorithm. The reason is that in this case our additive
assumption is more reasonable. Therefore we consider
the average links load in our evaluations.

In each test, the LSP demands are randomly selected
between)1,0(and the network link capacities are
randomly selected between),0(X where X is used
to control average network link capacities or the
average link loads. Each test is done hundred of times
and the average performance of the algorithm to find
optimal or suboptimal path is calculated and
compared to optimal solution extracted from the
exhaustive search.

Fig. 1 Network graph for algorithm evaluation

Table 1 Performance Results of proposed algorithm

Average link
load

% of times
that

reach optimal
solution

% of times
that reach sub

optimal
solution

 (% average
deviation)

% of times
that no

solution was
found

20 % 72 26.1 (14) 1.9

30% 71 23.4 (24) 5.6

40% 68 30 (10) 2

LSP1

D1
11

0

LSP3

LSP2
D3
11

1

2 3

4

5

6

D2

 174

Table (1) summarized the results of the algorithm for
three different average link loads.

Column two of this table shows the percentage of
times that the proposed algorithm can find the optimal
solution. Column three shows the percentage of times
that the algorithm finds a sup optimal solution. The
average deviation of this solution compare to optimal
solution is given in parentheses. Last Column shows
the percentage of times that the algorithm fails to find
solution.

As the table shows, the lighter the links load the better
is the performance of the proposed algorithm in
percentage of times to find the optimal solution.
Average deviation of the suboptimal solution is also
an important factor that should be noticed.

An important advantage of our algorithm is its low
computational complexity which makes it practical in
large network graphs with hundreds of LSP requests
where using exhaustive search is computationally
impossible.

Conclusions
In this paper we have presented a new algorithm for
off line LSP set up in MPLS networks. Off line layout
design is usually used as an initial operating point for
MPLS networks and in this phase links are not
heavily loaded. Using this fact we proposed a new
approximate algorithm based on dynamic
programming to map LSP requests onto the network
graph. In the first step of the algorithm we find
k-shortest path for each request assuming hop count
as the length of the path. In the second stage of the
algorithm, approximating the cost function with an
additive one, we try to assign one path to each request
using dynamic programming method. Evaluations
which are done on a directed network graph for
different average links load, as summarized in table 1,
show that the algorithm can find optimal or
suboptimal solution in more than 94% of times. The
main advantage of the proposed algorithm is its low
complexity which makes it practical in real large
network graphs.

References
[1] A. Elwalid, S. H. L. C. Jin, and I. Widjaja,

“MATE: MPLS adaptive traffic engineering”,
IEEE INFOCOM, 2001.

[2] T. V. Lakshman, K. Kar, M. Kodialam,
“Minimum interference routing of bandwidth
guaranteed tunnels with mpls traffic engineering
applications”, IEEE Journal on selected areas in
communication, Volume 18, Number 12, Dec.
2000

[3] I. Chlamtac, A. Farago, T. Zhang , “Optimizing
the System of Virtual Paths”, IEEE/ACM

Transactions on Networking, Volume: 2, Issue:
6, Dec 1994

[4] H. Hsu, F. Yeang-Sung Lin, “Near-Optimal
Constrained Routing in Virtual Circuite
Networks”, IEEE INFOCOM 2001.

[5] S. Beker, N. Puech, V. Friderikos, “A Tabu
Search Heuristic for the Offline MPLS Reduced
Complexity Layout Design Problem”, Lecture
Notes in Computer Science, Volume 3042 / 2004

[6] D. Bertsekas, R. Gallager, Data Networks.
Englewood Cliffs, NJ: Prentice-Hall;2nd ed., 1992

[7] D. Eppstein, “Finding the k shortest paths”, SIAM
J. Computing 28(2):652-673, 1998

